High Capacity Multi-Lithium Oxide Cathodes and Oxygen Stability **Jagjit Nanda** Email: nandaj@ornl.gov Phone: 865-241-8361 Oak Ridge National Laboratory 2017 U.S. DOE Vehicle Technologies Office Annual Merit Review **June 7, 2017 Project ID: ES106** This presentation does not contain any proprietary, confidential, or otherwise restricted information ## **Overview** ## **Timeline** - Project start date: Oct. 1, 2015 - Project end date: Sept. 30, 2018 - Percent complete: 65% ## **Budget** - FY16 Funding: \$ 400K - FY17 Funding: \$ 400K ## **Barriers** Performance: High energy density for PEV applications with cell level targets ≥ 400 Wh/kg and 600 Wh/L Life: More than 5000 deep discharges (SoC range) over the entire life **Safety:** Thermally stable and abuse tolerant ### **Partners** - Pacific Northwest National Laboratory Electron Microscopy - Brookhaven National Laboratory Synchrotron X-ray diffraction and Microscopy - SSRL, SLAC, Stanford CA XANES and X-ray imaging - CAMP Facility, Argonne National Laboratory ## Relevance and Issues - It's critical to develop practical high-voltage and high-capacity cathode materials for lithium-ion batteries to achieve DOE 2020 cell level targets of 400 Wh/kg & 750 Wh/L or Battery 500 goal of 500 Wh/kg for 1000 cycles. - Ni-rich NMC and concentration gradient NMC cathodes are currently being developed and commercialized to meet the energy density targets. - There is substantial evidence from recent experiments that most of the oxide cathodes evolve oxygen either directly or mediated by the carbonate electrolyte when cycled above 4.3 V. - Oxygen loss from the cathode surface contributes to irreversible capacity loss and structural transformations. ## Relevance and Issues - Oxygen activity and its participation in the redox process is an important barrier for attaining high voltage and capacity in a number of important cathode chemistries. - Current focus of this work is to understand oxygen loss and structural transformations in high capacity cathodes and develop approaches to address these. ### Cathode chemistries studied over the last 2 years Charge compensation at high voltage during delitihiation involves oxygen participation ## **Milestones** | Due Date | Description | Status | |--------------------|---|----------------------| | 06/30/2016
(Q3) | Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilizing Ni-rich compositions. Complete Subtask-2.1 XANES, microscopy, and XPS studies. | | | 09/30/2016
(Q4) | Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilize Ni-rich compositions. Subtask 2.2 Gas evolution and electrochemistry. | Complete | | 12/31/2016
(Q1) | Synthesize Ni-rich $\text{Li}_2\text{Cu}_x\text{Ni}_{1-x}\text{O}_2$ cathodes with x = 0.2 and 0.3 and evaluate their high voltage capacity and oxidative stability [> 225 mAh/g, 25 cycles]. | Complete/Go-No
Go | | 03/31/2017
(Q2) | Complete in-situ and ex-situ X-ray, neutron, and spectroscopic studies of Ni-rich $\rm Li_2Cu_xNi_{1-x}O_2$ and related high voltage cathode compositions. | Complete | | 06/30/2017
(Q3) | Synthesize one particular class and composition of cation disordered cathodes: Li ₂ MoO ₃ and Cr - substituted Li ₂ MoO ₂ . | In progress | | 09/30/2017
(Q4) | Complete structural and electrochemical performance analysis of disordered cathodes- Li ₂ MoO ₃ and Cr substituted Li ₂ MoO ₂ . | In progress | # **Approach** Design and synthesis of high-voltage, high-capacity oxide cathodes guided by *state-of-the-art* characterization and modeling: - High redox voltage in cathodes is enabled by addressing oxygen stability and/or incorporating polyanionic groups. - Synthetic approaches include anionic substitution and advanced coatings to stabilize the interface and bulk structure. - Structural and interfacial changes are correlated with electrochemical performance. - Diagnostic tools include a suite of microscopic and spectroscopic techniques. #### **Example:** Can we think of a stabilized oxide framework with redox active $Ni^{3+} \rightarrow Ni^{4+} / Cu^{2+} \rightarrow Cu^{3+}$? Fluorination is a simple case of anionic substitution to address oxygen stability. Unpublished 2017 ## Copper Stabilized Li₂NiO₂ Solid Solutions: Key Points - Synthesized Ni-rich $Li_2Cu_xNi_{1-x}O_2$ solid solution, x = 0.5 0.3 using solid state and sol-gel methods. - Cu stabilization improves electrochemical stability compared to parent phases Li₂NiO₂ and Li₂CuO₂, but oxygen loss occurs before accessing higher oxidation states (Cu^{2+/3+}; Ni^{3+/4+}). Structural transition and gas evolution during 1st charge cycle similar to lithium-excess TM oxides ## High Ni-content Li₂Cu_xNi_{1-x}O₂ Compositions Synthesized - As an alternate route, Li₂Cu_xNi_{1-x}O₂ (LCNO) solid solutions were synthesized via a sol-gel method using adipic acid as a chelating agent to reduce primary particle size with carbon coating. - LCNO prepared through the sol-gel method showed lower capacity and poor cycle life for one of the compositions, Li₂Cu_{0.4}Ni_{0.6}O₂, with Li₂CO₃ as the major impurity phase. This method was not pursued further. Li₂Ni_{1-x}Cu_xO₂ by solid state reaction $\sum_{y=0.6}^{5} x=0.4$ x=0.2 x=0.2 x=0.2Capacity (mAh/g) Dr. Wei Tong, Lawrence Berkeley National Laboratory Understanding and addressing the structural transitions and O₂ evolution during 1st charge cycle is key for electrochemical reversibility in high capacity Li- excess and multi-lithium TM oxides. In situ Raman study reported earlier confirms ex-situ XRD observations. Li₂Cu_{0.5}Ni_{0.5}O₂ is a model system studied here, but we notice similar structural changes in a host of multi-lithium TM oxides. **OAK RIDGE National Laboratory # Apart from structural changes we also observed exfoliation and loss of crystallinity with cycling. #### **Technical Accomplishment** XANES microscopy is sensitive to amorphous and nanocrystalline phases and impurities that techniques like X-ray diffraction cannot detect. Pristine Li₂Cu_{0.5}Ni_{0.5}O₂ has local Cu and Ni rich impurities mostly Li_xNiO or pure oxides of Ni and Cu 10 µm XANES mapping of Ni and Cu K edges Show changes in structure & coordination after 1st full cycle (details in technical backup slides) ## In situ XANES microscopy reveals phase changes and spatial distributions within Li₂Cu_{0.5}Ni_{0.5}O₂ particles. #### Summary - 1. Cu K-edge shifts > 4 V to lower energy. - 2. Shift does not correspond to Cu²⁺ to Cu³⁺ oxidation. - 3. Shift could mean structural transformation occurs without formal change in oxidation state # In situ XANES microscopy reveals phase changes and spatial distributions within Li₂Cu_{0.5}Ni_{0.5}O₂ particles. - Ni K-edge shift shows the same trend as Cu; noticeable shift after 4 V to lower energies. - These shifts occur around the same voltage where we see substantial gas evolution. ## Capacity of Li₂Cu_{0.5}Ni_{0.5}O₂ above 3.9 V is due to gas evolution. - Gas evolution in pouch cells was quantified using Archimedes' principle. - Li₂Cu_{0.5}Ni_{0.5}O₂ is stable against oxygen release up to extraction of one lithium per formula unit. - All capacity extracted above 3.9 V can be attributed to gas evolution, assuming 4 e⁻ per mole of gas. - O₂ and CO₂ were main gasses detected by mass spectrometry (G. Veith). #### **Technical Accomplishment** ## Gas Evolution of Li₂Cu_{0.5}Ni_{0.5}O₂ Cathodes In-situ mass spectrometry was used to determine the types/amounts of gases evolved from Li₂Cu_{0.5}Ni_{0.5}O₂ cathodes during cycling. - O₂ and CO₂ were main gases detected. - In-situ gas evolution studies allow us to monitor electrolyte decomposition products and oxygen evolution from the cathode lattice in an operating battery. - Similar results obtained from in situ DEMS work on Li₂Cu_{0.2}Ni_{0.8}O₂ from LBNL. (Wei Tong and Bryan McCloskey) ## Li₂MoO₃ Synthesis and Electrochemical Characterization Li₂MoO₃ has improved lattice oxygen stability^[1] compared to Li₂MnO₃. Thus, a synthesis procedure was developed to produce Li₂MoO₃ for Li-excess composite high-voltage cathodes. Synthesized Li₂MoO₃ has desired crystal structure (R3m spacegroup) Half-Cell Characterization (2.0 – 4.8 V at 10 mA/g) #### **Technical Accomplishment** ## Ex-Situ Raman and XRD of Li₂MoO₃ Cathodes Li_2MoO_3 cathode was cycled between 2.0 – 4.8 V at 10 mA/g for 10 cycles. The cell was disassembled after recharging to 4.8 V. The Li_2MoO_3 electrode was rinsed with DMC before post-mortem analysis. | Raman Peak in Pristine Li ₂ MoO ₃ | Raman Shift
(cm ⁻¹) | Assignment ^[1] | |---|------------------------------------|---| | а | 277 | Li ₂ MoO ₃ (Mo-O-Mo bridging species in Mo ₃ O ₁₃ clusters) | | b | 351 | Li ₂ MoO ₃ (Mo=O in MoO ₆ octahedral) | | С | 896 | Li ₂ MoO ₄ (MoO ₄ tetrahedral in Li ₂ MoO ₄).
Li ₂ MoO ₄ is a minor impurity which was not
detected by XRD. | [1] J. Ma et al. J. Power Sources 2014, 258, 314-320. - Post-mortem analysis suggests that Li₂MoO₃ becomes amorphous during cycling. - Future experiments using *in-situ* XRD, *in-situ* Raman, and *in-situ* mass spectrometry will elucidate the details of this transformation. ## **Response to Reviewers Comments** This project was not reviewed in 2016. All Comments from 2015 were addressed in 2016 presentation. ## Collaborations and Coordination with other Institutions Electron Microscopy Drs. Chongmin Wang & Pengfei Yan In-operando X-ray Synchrotron Studies and Microscopy Dr. Feng Wang Synchrotron X-ray microscopy and 3D microstructure Dr. Johanna Nelson Weker Modeling and oxygen activity of Li-excess compositions # Remaining Barriers and Challenges - Determine if anionic substitution like fluorination can suppress oxygen evolution and enable high voltage operation. - Investigate oxygen stability in Li-excess cation disordered cathodes. - Determine the stability of cathode powders or electrodes in air, especially with respect to Li₂CO₃ formation on surface. - Optimize the synthesis and electrochemical performance of cation disordered Liexcess compositions: Li₂MoO₃ and Li-excess Cr-substituted LiMoO₂. - Develop approaches to mitigate lattice oxygen loss and improve structural stability of the cathode surface. ## **Proposed Future Research** Synthesis and Optimization of High Capacity 2-Lithium Oxide Cathodes: Li₂M^IM^{II}O₃ and Li₂M^IM^{II}O₃ M^I – M^{II}: Ni, Cu, Mo, Mn, Cr These are crystalline, ordered, stoichiometric compositions to begin with #### Lithium-excess disordered compounds $\text{Li}_{1+x}(\text{Mn,Co,Ni})\text{O}_2; \ \text{Li}_{1+x}\text{MoCrO}_2; \ \text{Li}_{1.25}\text{Nb}_{0.5}\text{Mn}_{0.5}\text{O}_2 \\ \text{Li}_{1.2}\text{Mn}_{0.4}\text{Ti}_{0.4}\text{O}_2$ #### Goals - Increase oxidative stability and attain extra capacity. - Understand the role of disorder in increasing the lithium diffusion pathways. - Quantify oxygen participation in the redox process. ### Origin of extra capacity in disordered cathodes Any proposed future work is subject to change based on funding levels Seo, Ceder et al. Nature Chemistry, 8, 692 (2016) #### Technical Approach: # **Summary** Synthesis and in-depth analysis of lithium-excess and multilithium chemistries for high voltage, high capacity cathodes - Model driven synthetic approaches: solution-based, sol-gel and solid state methods. - Diagnostic tools include a suite of microscopic, spectroscopic, and analytical techniques. - Emphasis is placed on understanding and preventing oxygen loss at high voltage #### Accomplishments: - Identified chemical and structural changes that occur in Li₂Cu_{0.5}Ni_{0.5}O₂ under in situ conditions and mapped out phase transformations using TXM-XANES. - Unraveled mechanisms of electrochemical activity and degradation of Li₂Cu_xNi_{1-x}O₂ cathodes using a combination of X-ray and neutron diffraction, in situ Raman spectroscopy, electrochemistry, gas evolution experiments, and TEM. - Synthesized Li₂MoO₃ as an analogue to Li₂MnO₃ with greater stability of lattice oxygen and completed initial characterization with electrochemistry, XRD, and Raman. #### Ongoing work: - Optimize the synthesis and processing of cation disordered Li-excess compositions, Li₂MoO₃ and Cr-doped Li₂MoO₃ - Understand structural transformations in Li₂MoO₃ in situ using XRD, Raman, and gas monitoring. - Investigate oxygen stability in disordered cathodes and continue to develop approaches to prevent oxygen loss. # **Technical Back-up** # Ex-situ XANES Spectra: Li₂Cu_{0.5}Ni_{0.5}O₂ These spectra are used to generate the Ni and Cu K edge XANES 2D maps as shown in slide # 11 National Laboratory Li₂CuO₂ and F- substituted Li₂CuO₂ have similar rate and capacity retention